Nanofiber assembly by rotary jet-spinning.
نویسندگان
چکیده
High-voltage electrical fields and low production rate limit electrospinning, the electrical charging of polymer liquids, as a means of nanofiber fabrication. Here, we show a facile method of fabrication of aligned three-dimensional nanofiber structures by utilizing high-speed, rotating polymer solution jets to extrude fibers. Termed rotary jet-spinning, fiber morphology, diameter, and web porosity can be controlled by varying nozzle geometry, rotation speed, and polymer solution properties. We demonstrate the utility of this technique for tissue engineering by building anisotropic arrays of biodegradable polymer fibers and seeding the constructs with neonatal rat ventricular cardiomyocytes. The myocytes used the aligned fibers to orient their contractile cytoskeleton and to self-organize into a beating, multicellular tissue that mimics the laminar, anisotropic architecture of the heart muscle. This technique may prove advantageous for building uniaxially aligned nanofiber structures for polymers which are not amenable to fabrication by electrospinning.
منابع مشابه
Effect of solvent evaporation on fiber morphology in rotary jet spinning.
The bulk production of polymeric nanofibers is important for fabricating high-performance, nanoscale materials. Rotary jet spinning (RJS) enables the mass production of nanostructured fibers by centrifugal forces but may result in inconsistent surface morphologies. Because nanofiber performance is dependent upon its surface features, we asked which parameters must be optimized during production...
متن کاملA simple model for nanofiber formation by rotary jet-spinning
Paula Mellado, Holly A. McIlwee, Mohammad R. Badrossamay, Josue A. Goss, L. Mahadevan, and Kevin Kit Parker School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA Disease Biophysics Group, Ha...
متن کاملA comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems
Electrocentrifugal spinning is a recently developed spinning system whose performance is still under investigation by researchers. In this study the process of jet formation in electrocentrifugal spinning is explored and compared to the same process in electrospinning and centrifuge spinning. The results show that the incorporation of the electrical and the centrifugal forces in the electrocent...
متن کاملEngineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.
Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffo...
متن کاملHybrid Nanomanufacturing Process for High-Rate Polymer Nanofiber Production
Nanotechnology and nanomaterials have the potential to revolutionize existing and create entirely new industries. Unique physical, mechanical, chemical, and biological properties of nanomaterials have been extensively documented in the last two decades. However, most nanomaterials are discontinuous in nature, creating problems with their processing and manipulation into devices and raising heal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2010